The strong prognostic value of KELIM, a model-based parameter from CA 125 kinetics in ovarian cancer: Data from CALYPSO trial (a GINECO-GCIG study)

2013 
Abstract Background Unexpected results were recently reported about the poor surrogacy of Gynecologic Cancer Intergroup (GCIG) defined CA-125 response in recurrent ovarian cancer (ROC) patients. Mathematical modeling may help describe CA-125 decline dynamically and discriminate prognostic kinetic parameters. Methods Data from CALYPSO phase III trial comparing 2 carboplatin-based regimens in ROC patients were analyzed. Based on population kinetic approach, serum [CA-125] concentration-time profiles during first 50 treatment days were fit to a semi-mechanistic model with following parameters: "d[CA-125]/dt=(KPROD∗exp (BETA∗t))∗Effect−KELIM∗[CA-125]" with time, t; tumor growth rate, BETA; CA-125 tumor production rate, KPROD; CA-125 elimination rate, KELIM and K-dependent treatment indirect Effect. The predictive values of kinetic parameters were tested regarding progression-free survival (PFS) against other reported prognostic factors. Results Individual CA-125 kinetic profiles from 895 patients were modeled. Three kinetic parameters categorized by medians had predictive values using univariate analyses: K; KPROD and KELIM (all P Conclusions Mathematical modeling of CA-125 kinetics in ROC patients enables understanding of the time-change components during chemotherapy. The contradictory surrogacy of GCIG-defined CA-125 response was confirmed. The modeled CA-125 elimination rate KELIM, potentially assessable in routine, may have promising predictive value regarding PFS. Further validation of this predictive marker is warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    12
    Citations
    NaN
    KQI
    []