Joint direction of arrival estimation and array calibration for coprime MIMO radar

2019 
Abstract Compared to large-scale MIMO radar, coprime MIMO radar can achieve approximate estimation performance with reduced antenna number. In this paper, joint direction of arrival (DOA) estimation and array calibration for coprime multiple-input multiple-output (MIMO) radar is considered, and an iterative method for the estimations of DOA and array gain-phase errors is proposed. Based on the received data structure of coprime MIMO radar, trilinear decomposition is firstly adopted to obtain the estimations of transmit and receive direction matrices, which are perturbated by the gain-phase errors. Through equation transformation, the un-perturbated direction matrices and gain-phase errors can be iteratively updated based on Least squares (LS). Finally, the unique DOA estimation is determined from the intersection of transmit and receive direction matrices. The proposed algorithm achieves better DOA estimation and array calibration performance than other methods including estimation of signal parameters via rotational invariance techniques (ESPRIT)-like algorithm, multiple signal classification (MUSIC)-like algorithm and joint angle and array gain-phase error estimation (JAAGE) method, and it performs close to the method with ideal arrays. Multiple simulation results verify the algorithmic effectiveness of the proposed method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    7
    Citations
    NaN
    KQI
    []