Highly Efficient N-Heterocyclic Carbene/Ruthenium Catalytic Systems for the Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Effects of Ancillary and Additional Ligands

2019 
The transition-metal-catalyzed alcohol dehydrogenation to carboxylic acids has been identified as an atom-economical and attractive process. Among various catalytic systems, Ru-based systems have been the most accessed and investigated ones. With our growing interest in the discovery of new Ru catalysts comprising N-heterocyclic carbene (NHC) ligands for the dehydrogenative reactions of alcohols, we designed and prepared five NHC/Ru complexes ([Ru]-1–[Ru]-5) bearing different ancillary NHC ligands. Moreover, the effects of ancillary and additional ligands on the alcohol dehydrogenation with KOH were thoroughly explored, followed by the screening of other parameters. Accordingly, a highly active catalytic system, which is composed of [Ru]-5 combined with an additional NHC precursor L5, was discovered, affording a variety of acid products in a highly efficient manner. Gratifyingly, an extremely low Ru loading (125 ppm) and the maximum TOF value until now (4800) were obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    14
    Citations
    NaN
    KQI
    []