Machine learning based on the multimodal connectome can predict the preclinical stage of Alzheimer's disease: a preliminary study.

2021 
Subjective cognitive decline (SCD) may be a preclinical stage of Alzheimer’s disease (AD). Neuroimaging studies suggest that abnormal brain connectivity plays an important role in the pathophysiology of SCD. However, most previous studies focused on single modalities only. Multimodal combinations can more effectively utilize various information and little is known about their diagnostic value in SCD. One hundred ten SCD individuals and well-matched healthy controls (HCs) were recruited in this study (the primary sample: 35 SCD and 36 HC; the validation sample: 21 SCD and 18 HC). Multimodal imaging data were used to construct functional, anatomical, and morphological networks, respectively. These networks were used in combination with a multiple kernel learning-support vector machine to predict SCD individuals. We validated our model on another independent sample. Multiple linear regression (MLR) analyses were conducted to investigate the relationships among network metrics, cognition, and pathological biomarkers. We found that the characteristics identified from the multimodal network were primarily located in the default mode network (DMN) and salience network (SN), achieving an accuracy of 88.73% (an accuracy of 79.49% for an independent sample) based on the integration of the three modalities. MLR analyses showed that increased AV45 SUVRs were significantly associated with impaired memory function, the enhanced functional connectivity, and the decreased morphological connectivity. This study suggests that abnormal multimodal connections within DMN and SN can be used as effective biomarkers to identify SCD and provide insight into understanding the pathophysiological mechanisms underlying SCD. • Multimodal brain networks improve the detection accuracy of SCD. • Abnormal connections within DMN and SN can be used as effective biomarkers for the identification of SCD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []