Genotyping of Cytomegalovirus from Symptomatic Infected Neonates in Iraq

2019 
: Among all other viruses, human cytomegalovirus (HCMV) is the most frequent cause of congenital infection worldwide. Strain variation in HCMV may predict severity or outcome of congenital HCMV disease. Previous studies have associated a particular genotype with specific sequelae or more severe illness, but the results were contradictory. There are no previous studies addressing the genotype of HCMV in Iraq. Therefore, the present study is aimed at molecular detection and genotyping of HCMV isolated from symptomatic congenitally/perinatally infected neonates. This prospective study comprised 24 serum samples from symptomatic neonates with congenital/perinatal infection. Viral DNA was extracted from these serum samples; nested polymerase chain reaction was used to amplify the HCMV gB (UL55) gene. Polymerase chain reaction products of the second round of amplification were subjected to direct Sanger sequencing. Bioedit and MEGA5 software (EMBL-EBI, Hinxton, Cambridgeshire, UK) were used for alignment and construction of a phylogenetic tree. Human cytomegalovirus DNA was detected in 23 of 24 samples (95.8%). According to the phylogenetic analysis, three genotypes of the virus were identified; gB1, gB2, and gB3 genotypes. However, the gB4 genotype was not detected. Human cytomegalovirus gB3 was the most frequent genotype: 14 of 24 (58.33%) among symptomatic infected infants, followed by gB1 (6/24; 25%) and gB2 (4/24; 16.67%). A mixed HCMV infection with gB3/gB1 was detected in only one case. Human cytomegalovirus gB3 was the most predominant genotype among symptomatic congenitally/perinatally HCMV-infected neonates. No association was found between B3 genotype and specific clinical presentation. Jaundice was the most common clinical feature among symptomatically infected neonates, followed by hepatosplenomegaly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    5
    Citations
    NaN
    KQI
    []