Construction of a High-Density Genetic Linkage Map and QTL Mapping for Growth-Related Traits in Takifugu bimaculatus

2020 
Takifugu bimaculatus is a euryhaline species, distributed ranging from the southern Yellow Sea to the South China Sea. Their tolerance to a wide range of salinity and temperature, coupled with a desirable firm texture, makes T. bimaculatus a strong candidate for Takifugu aquaculture in subtropics areas. Due to the increasing demand in markets and emerging of the Takifugu aquaculture industry, close attention has been paid to improvement on the T. bimaculatus production. In aquaculture, the great effort has been put into marker-assisted selective breeding, and efficient improvement was realized. However, few genetic resources on T. bimaculatus are provided so far. Aiming at understanding the genetic basis underlying important economic growth traits, facilitating genetic improvement and enriching the genetic resource in T. bimaculatus, we constructed the first genetic linkage map for T. bimaculatus via double digestion restriction-site association DNA sequencing and conducted quantitative traits locus (QTL) mapping for growth-related traits. The map comprised 1976 single nucleotide polymorphism markers distributed on 22 linkage groups (LG), with a total genetic distance of 2039.74 cM. Based on the linkage map, a chromosome-level assembly was constructed whereby we carried out comparative genomics analysis, verifying the high accuracy on contigs ordering of the linkage map. On the other hand, 18 QTLs associated with growth traits were detected on LG6, LG7, LG8, LG10, LG20, and LG21 with phenotypical variance ranging from 15.1 to 56.4%. Candidate genes participating in cartilage development, fat accumulation, and other growth-related regulation activities were identified from these QTLs, including col11a1, foxa2, and thrap3. The linkage map provided a solid foundation for chromosomes assembly and refinement. QTLs reported here unraveled the genomic architecture of some growth traits, which will advance the investigation of aquaculture breeding efforts in T. bimaculatus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    13
    Citations
    NaN
    KQI
    []