Optical Instrumentation for Temperature and Velocity Measurements in Rig Turbines

1998 
Non-intrusive optical measurement techniques have been examined in the context of developing robust instruments which can routinely yield data of engineering utility in high speed turbomachinery test rigs. The engineering requirements of such a measurement are presented. Of particular interest were approaches that provide both velocity and state-variable information in order to be able to completely characterize transonic flowfields. Consideration of all of the requirements lead to the selection of particle image velocimetry (PIV) for the approach to velocity measurement while laser induced fluorescence of oxygen (O 2 LIF) appeared to offer the most promise for gas temperature measurement. A PIV system was developed and demonstrated on a transonic turbine stage in the MIT blowdown turbine facility. A comprehensive data set has been taken at one flow condition. Extensive calibration established the absolute accuracy of the velocity measurements to be 3-5 %. The O 2 LIF proved less successful. Although accurate for low speed flows, vibrational freezing of O 2 prevented useful measurements in the transonic, 300-600 K operating range of interest here.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []