Enhancing effects of Anagliptin on myoblast differentiation and the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cells

2020 
To investigate the regulatory effects of anagliptin, a DPP-IV inhibitor used to treat type 2 diabetes mellitus (T2DM), on myoblast differentiation and mitochondrial biogenesis in C2C12 mouse skeletal muscle cells. C2C12 myoblasts were differentiated into myotubes and then treated with anagliptin (10, 25, and 50 mumol/L) for 24 hours. In C2C12 myotubes, anagliptin treatment was significantly increased the expression of MHC, PGC1alpha, Sirt-1, NRF-1, and TFAM and the phosphorylation of AMPK and ACC in a concentration-dependent manner. Anagliptin also significantly increased the total ATP levels in the myotubes. These results suggest that anagliptin can help prevent skeletal muscle dysfunction in T2DM by promotion of myoblast differentiation and enhancement of energy production via upregulation of mitochondrial biogenetic factors and activation of the AMPK/ACC signalling pathway.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []