Modeling and Simulation for Coupled Crash Mechanics and Biomechanics of Aircraft Structures and Passengers

2021 
Abstract The DYCAST (Dynamic Crash Analysis of Structures) experiments that started at NASA Langley Research Center during the late 1970s have greatly influenced the methodology and thinking of aircraft crashworthiness and survivability studies, and was continued and refined at other aerospace establishments. Nevertheless, so far most of the existing work has emphasized the impact damage to the aircraft section. Issues related to potential passenger injuries have not been properly addressed in the literature, to the best of our knowledge. Here, we study the DYCAST problem integrally by treating and combining impact damage and passenger injuries altogether. We develop the biomechanics by way of modal analysis of passenger dummy motions coupled with the vibration of aircraft structures in order to understand their basic interactions. Two types of mechanical dummies are used in this study. Such a modal analysis can help identify basic injury types, but is valid only in the constructed models linear regime. However, we are able to extend the linear elastic model to a nonlinear elastoplastic computational model by using the versatile software LS-DYNA as the platform. Computer simulations are carried out on the supercomputer clusters and the numerical results are rendered into video animations for visualization and analysis. One can see, for example, how the passenger-dummy interactive motions with the fuselage and fixtures and the potential caused injuries in the event of general aircraft crashes on a fractal domain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []