Plasmon-driven sub-picosecond breathing of metal nanoparticles

2017 
We present the first real-time atomistic simulation on the quantum dynamics of icosahedral silver nanoparticles under strong laser pulses, using time dependent density functional theory (TDDFT) molecular dynamics. We identify the emergence of sub-picosecond breathing-like radial oscillations starting immediately after laser pulse excitation, with increasing amplitude as the field intensity increases. The ultrafast dynamic response of nanoparticles to laser excitation points to a new mechanism other than equilibrium electron–phonon scattering previously assumed, which takes a much longer timescale. A sharp weakening of all bonds during laser excitation is observed, thanks to plasmon damping into excited electrons in anti-bonding states. This sudden weakening of bonds leads to a uniform expansion of the nanoparticles and launches coherent breathing oscillations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    20
    Citations
    NaN
    KQI
    []