Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity.

2020 
The rapidly emerging field of nanotechnology has offered innovative discoveries. Due to a wide variety of nanotechnology applications in the industrial, medical, and consumptive products, the application of nanotechnology has received considerable attention in the past decades. Metal-based nanoparticles including metal and metal oxide nanoparticles are now widely utilized in different areas of nanotechnology, leading to an increase in human exposure to nonmaterial. Since the kidney is one of the major organs to remove a variety of potentially harmful substances, including nanoparticles (NPs), from living organisms and a large proportion of cardiac output reaches the kidney, this organ is susceptible to the toxin-induced renal injury. However, despite the extensive use of NPs, there is still a limited understanding of NP-mediated toxicity. The unique physicochemical properties of metal-based NPs not only make them highly desirable in a variety of applications but also enable them to induce changes at biological levels of cellular activities, including reactive oxygen species (ROS) generation. Since oxidative stress is a key factor of NP-induced injury, it is urgent to characterize the ROS response resulting from metal-based NPs. This review summarizes an assessment of the signaling pathways that are involved in the metal-based NP-induced nephrotoxicity, with a particular focus on ROS production along with the potential oxidative stress-dependent mechanism. However, available data show that metal-based NPs may have a severe impact on the renal system, but the exact molecular mechanism of nephrotoxicity is not fully understood. A highly effective strategy for a better understanding of the mechanism would be to collect an increasing volume of information about the exposure time, physicochemical characteristics of the engineered NPs, and the cellular effects. In order to achieve a thorough knowledge of ROS-dependent renal toxicity, both in vitro and in vivo studies should be considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    10
    Citations
    NaN
    KQI
    []