Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

2017 
Infrared spectroscopy is a powerful tool for basic and applied science. The molecular spectral fingerprints in the 3 um to 20 um region provide a means to uniquely identify molecular structure for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy. Driven by such applications, the development of low-noise, coherent laser sources with broad, tunable coverage is a topic of great interest. Laser frequency combs possess a unique combination of precisely defined spectral lines and broad bandwidth that can enable the above-mentioned applications. Here, we leverage robust fabrication and geometrical dispersion engineering of silicon nanophotonic waveguides for coherent frequency comb generation spanning 70 THz in the mid-infrared (2.5 um to 6.2 um). Precise waveguide fabrication provides significant spectral broadening and engineered spectra targeted at specific mid-infrared bands. We use this coherent light source for dual-comb spectroscopy at 5 um.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []