PbTe(In) films with variable microstructure for photodetection in IR and terahertz range

2012 
The work deals with studies of the grain size and surface state effect on photoelectric and transport properties of PbTe(In) films in the temperature range from 4.2 K up to 200 K under irradiation of a blackbody source and terahertz laser pulses. The PbTe(In) films were deposited on insulating substrates kept at the temperatures T S equal to -120 (see manuscript) 250C. AFM, SEM, Auger spectroscopy and X-ray diffraction were used to study the film microstructure. Increase of the TS value led to mean grain size growth from 60 up to 300 nm. All films had a column-like structure with the columns nearly perpendicular to the substrate plane. It is shown that microstructure of the films strongly affects the photoconductivity character in the terahertz region of the spectrum. Positive persistent photoresponse is observed at low temperatures in the polycrystalline films. For these films transport and photoelectric properties are determined by the grain volume and impurity state specifics. Nanocrystalline films have all features of non-homogeneous systems with band modulation. For these films only negative photoconductivity is observed in the whole temperature range. Possible mechanisms of the photoresponse formation are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []