Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction

2020 
Abstract Developing high performance, good stability and noble-metal-free electrocatalysts for renewable hydrogen evolution reaction (HER) remain a substantial challenge. Herein, we introduce a novel facile one-step in-situ strategy through pyrolysis for the synthesis of Co2P nanoparticles encapsulated Boron, Nitrogen, and Phosphorous tri-doped carbon nanotubes (Co2P/BNP-CNTs). The synergetic effect between Co2P nanoparticles and heteroatom doped CNTs contributes to the remarkable HER performance. The Co2P/BNP-CNT-900 electrocatalyst shows a low overpotential of 133 mV at a current density of 10 mA cm−2 and a small Tafel slope of 90 mV dec−1 in 0.1 M KOH media. More importantly, the Co2P/BNP-CNT-900 electrocatalyst exhibits superior long-term stability in alkaline solution at −0.25 V versus Reversible Hydrogen Electrode (RHE) for 15 h and up to 1000 cycles with negligible performance loss. Overall, our works suggest a one-pot facile synthesis strategy for rational designing high-performance electrocatalysts with enhanced HER performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    11
    Citations
    NaN
    KQI
    []