Long Term Analysis for Estimation of Wave Slamming Pressures for Spar Design

2015 
A long term analysis was performed to determine extreme wave slamming loads on the Aasta Hansteen Spar, the first production and storage Spar to be installed in the Norwegian Sea. The Spar will experience high slamming pressures on the hull due to harsh environments in the field. Extensive model tests were performed to measure the wave slamming pressure which is one of challenging design parameters.The slamming loads were measured with a 3×3 array of force transducer panels attached to the Spar hull. The extreme slamming loads were estimated from 3-hour simulations of the 100-yr and 10000-yr wave environments at the Aasta Hansteen field in the Norwegian Sea. The wave simulations included fourteen sea states, and each sea state was represented by as many as 20 realizations.Based on model test data, short term analysis of 3-hour extreme pressure at each tested sea state was performed using the Gumbel distribution. Due to high variability of 3-hour maximum pressures, a long term analysis was required to investigate the proper percentile level to be used in the design.The paper presents a long term statistical methodology for extreme wave slamming loads that is used to calculate long term slamming pressures corresponding to a specified annual exceedance probability of q (e.g., q = 10−2 and q = 10−4). The paper also derives the appropriate non-exceedance probability for a short term wave environment that reproduces the long term pressures of a specified annual exceedance probability, q.Various sensitivity analyses (e.g., on the two Gumbel parameters, number of realizations, etc.) were performed to validate the short term target percentiles and associated extreme pressures derived from this approach.Details of the model tests and methodology to define the design pressure profile above mean water level (MWL) are presented in a companion paper of this Conference.Copyright © 2015 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []