A Variational Autoencoder-Based Secure Transceiver Design Using Deep Learning

2020 
To achieve new applications for 5G communications, physical layer security has recently drawn significant attention. In a wiretap channel system, our goal is to minimize information leakage to an eavesdropper while maximizing the performance of transmission to the desired or legitimate receiver. Complicated systems or channel models make it difficult to design secrecy systems based on the information theory. In this paper, we propose a deep learning-based transceiver design for secrecy systems as an alternative. Specifically, we modify the loss function design of a variational autoencoder, which is a special type of neural network, making it possible to provide both robust data transmission and security in an unsupervised fashion. We further investigate the impact of an imperfect channel state information and use simulation results to prove that our approach can outperform the existing learning-based methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []