Lung radiofrequency ablation: post-procedure imaging patterns and late follow-up

2020 
Abstract Purpose To describe expected imaging features on chest computed tomography (CT) after percutaneous radiofrequency ablation (RFA) of lung tumors, and their frequency over time after the procedure. Methods In this double-center retrospective study, we reviewed CT scans from patients who underwent RFA for primary or secondary lung tumors. Patients with partial ablation or tumor recurrence during the imaging follow-up were not included. The imaging features were assessed in pre-defined time points: immediate post-procedure, ≤4 weeks, 5−24 weeks, 25−52 weeks and ≥52 weeks. Late follow-up (3 and 5 years after procedure) was assessed clinically in 48 patients. Results The study population consisted of 69 patients and 144 pulmonary tumors. Six out of 69 (9%) patients had primary lung nodules (stage I) and 63/69 (91 %) had metastatic pulmonary nodules. In a patient-level analysis, immediately after lung RFA, the most common CT features were ground glass opacities (66/69, 96 %), consolidation (56/69, 81 %), and hyperdensity within the nodule (47/69, 68 %). Less than 4 weeks, ground glass opacities (including reversed halo sign) was demonstrated in 20/22 (91 %) patients, while consolidation and pleural thickening were detected in 17/22 patients (77 %). Cavitation, pneumatocele, pneumothorax and pleural effusions were less common features. From 5 weeks onwards, the most common imaging features were parenchymal bands. Conclusions Our study demonstrated the expected CT features after lung RFA, a safe and effective minimally invasive treatment for selected patients with primary and secondary lung tumors. Diagnostic and interventional radiologists should be familiar with the expected imaging features immediately after RFA and their change over time in order to avoid misinterpretation and inadequate treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []