Targeted Protein Acetylation in Cells Using Heterobifunctional Molecules

2021 
Protein acetylation is a central event in orchestrating diverse cellular processes. However, current strategies to investigate protein acetylation in cells are often non-specific or lack temporal and magnitude control. Here, we developed an acetylation tagging system, AceTAG, to induce acetylation of targeted proteins. The AceTAG system utilizes bifunctional molecules to direct the lysine acetyltransferase p300/CBP to proteins fused with the small protein tag FKBP12F36V, resulting in their induced acetylation. Using AceTAG, we induced targeted acetylation of a diverse array of proteins in cells, specifically histone H3.3, the NF-{kappa}B subunit p65/RelA, and the tumor suppressor p53. We demonstrate that targeted acetylation with the AceTAG system is rapid, selective, reversible, and can be controlled in a dose-dependent fashion. AceTAG represents a useful strategy to modulate protein acetylation and will enable the exploration of targeted acetylation in basic biological and therapeutic contexts. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=67 SRC="FIGDIR/small/454011v1_ufig1.gif" ALT="Figure 1"> View larger version (19K): org.highwire.dtl.DTLVardef@e7eeddorg.highwire.dtl.DTLVardef@f2fbf1org.highwire.dtl.DTLVardef@7a9d23org.highwire.dtl.DTLVardef@1e2a5b4_HPS_FORMAT_FIGEXP M_FIG C_FIG
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []