Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth

2019 
Although prenatal and postnatal programming of metabolic diseases in adulthood is well established, the mechanisms underpinning metabolic programming are not. Dlk1, a key regulator of fetal development, inhibits adipocyte differentiation and restricts fetal growth. Assess DLk1 expression in a Wistar rat model of catch-up growth following intrauterine restriction. Dams fed ad libitum delivered control pups (C) and dams on a 50% calorie-restricted diet delivered pups with low birth weight (R). Restricted offspring fed a standard rat chow showed catch-up growth (R/C) but those kept on a calorie-restricted diet did not (R/R). Decreased Dlk1 expression was observed in adipose tissue and skeletal muscle of R/C pups along with excessive visceral fat accumulation, decreased circulating adiponectin, increased triglycerides and HOMA-IR (from p < 0.05 to p < 0.0001). Moreover, in R/C pups the reduced Dlk1 expression in adipose tissue and skeletal muscle correlated with visceral fat (r = −0.820, p < 00001) and HOMA-IR (r = −0.745, p = 0.002). Decreased Dlk1 expression relates to visceral fat expansion and insulin resistance in a rat model of catch-up growth following prenatal growth restriction. Modulation of Dlk1 expression could be among the targets for the early prevention of fetal programming of adult metabolic disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    2
    Citations
    NaN
    KQI
    []