System level heat integration and efficiency analysis of hydrogen production process based on solid oxide electrolysis cells

2021 
Abstract The solid oxide electrolysis cells (SOEC) technology is a promising solution for hydrogen production with the highest electrolysis efficiency. Compared with its counterparts, operating at high temperature means that SOEC requires both power and heat. To investigate the possibility of coupling external waste heat with the SOEC system, and the temperature & quantity requirement for the external waste heat, a universal SOEC system operating at atmospheric pressure is proposed, modeled and analyzed, without specific waste heat source assumption such as solar, geothermal or industrial waste heat. The SOEC system flow sheet is designed to create opportunity for external waste heat coupling. The results show that external waste heat is required for feed stock heating, while the recommended coupling location is the water evaporator. The temperature of the external waste heat should be above 130 °C. For an SOEC system with 1 MW electrolysis power input, the required external waste heat is about 200 kW. When the stack operates at thermoneutral state and 800 °C, the specific energy consumption is 3.77 kWh/Nm3-H2, of which electric power accounts for 84% (3.16 kWh/Nm3-H2) and external waste heat accounts for 16% (0.61 kWh/Nm3-H2). The total specific energy consumption remains almost unchanged when operating the SOEC stack around the thermoneutral condition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []