Comprehensive Insight into Degradation Mechanism ofGreen Biopolyester Nanocomposites Using Functionalized Cellulose Nanocrystals

2019 
Cellulose nanoparticles (CNPs) have been widely reported to improve the crystallization rate, mechanical and thermal properties as well as degradation behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Unfortunately, few studies have focused on the relationship between surface functional groups of CNPs and hydrogen bond interactions on the degradation rate and the mechanistic understanding of PHBV nanocomposites. To demonstrate degradation pathways, three types of CNPs with different amounts of surface hydroxyl groups were designed and then incorporated into PHBV to control the thermal stability, mechanical properties, and especially various degradation behavior by modulating the hydrogen bonding interactions with PHBV, achieving modulated degradation rate of nanocomposites. Furthermore, possible mechanisms describing the thermal, in vitro hydrolytic, and soil degradation of PHBV nanocomposites with various CNPs were proposed. In particular, PHBV nanocomposites reinforced by cellulose nanoc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    14
    Citations
    NaN
    KQI
    []