Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in Marfan syndrome

2019 
AIMS: Life expectancy in Marfan syndrome patients has improved thanks to the early detection of aortic dilation and prophylactic aortic root surgery. Current international clinical guidelines support the use of aortic root diameter as a predictor of complications. However, other imaging markers are needed to improve risk stratification. This study aim to ascertain whether proximal aorta longitudinal and circumferential strain and distensibility assessed by cardiac magnetic resonance (CMR) predict the aortic root dilation rate and aortic events in Marfan syndrome. METHODS AND RESULTS: One hundred and seventeen Marfan patients with no previous aortic dissection, cardiac/aortic surgery, or moderate/severe aortic regurgitation were prospectively included in a multicentre protocol of clinical and imaging follow-up. At baseline, CMR was performed and proximal aorta longitudinal strain and ascending aorta circumferential strain and distensibility were obtained. During follow-up (85.7 [75.0-93.2] months), the annual growth rate of aortic root diameter was 0.62 ± 0.65 mm/year. Fifteen patients underwent elective surgical aortic root replacement and four presented aortic dissection. Once corrected for baseline clinical and demographic characteristics and aortic root diameter, proximal aorta longitudinal strain, but not circumferential strain and distensibility, was an independent predictor of the aortic root diameter growth rate (P = 0.001, P = 0.823, and P = 0.997, respectively), z-score growth rate (P = 0.013, P = 0.672, and P = 0.680, respectively), and aortic events (P = 0.023, P = 0.096, and P = 0.237, respectively). CONCLUSION: Proximal aorta longitudinal strain is independently related to the aortic root dilation rate and aortic events in addition to aortic root diameter, clinical risk factors, and demographic characteristics in Marfan syndrome patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    32
    Citations
    NaN
    KQI
    []