Surface-Directed Assembly of Sequence-Defined Synthetic Polymers into Networks of Hexagonally Patterned Nanoribbons with Controlled Functionalities

2016 
The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to the design and synthesis of biomimetic materials. While sequence-defined polymers hold great promise to mimic proteins and peptides for functions, controlled assembly of them on surfaces still remains underdeveloped. Here, we report the assembly of 12-mer peptoids containing alternating acidic and aromatic monomers into networks of hexagonally patterned nanoribbons on mica surfaces. Ca2+–carboxylate coordination creates peptoid–peptoid and peptoidmica interactions that control self-assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles; these particles then transform into hexagonally patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy studies show that peptoidmica interactions are much stronger than peptoid–peptoid interactions, illuminating the driving forces for mica-directed peptoi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    43
    Citations
    NaN
    KQI
    []