Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring

2007 
Abstract Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO 2 spring suggested no down-regulation. The insensitivity of Gs to a CO 2 increase (from ambient 1500 to 2000 μmol mol −1 ) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO 2 springs. At the CO 2 -enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2× ambient O 3 concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO 2 was one-third lower than the concomitant Gs reduction, so that the O 3 uptake per single stoma was lower than at ambient CO 2 . No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO 2 -enriched site, accounting for lower O 3 sensitivity. A long-term exposure to H 2 S, reflected by higher foliar S-content, and CO 2 might depress the antioxidant capacity of leaves close to the vent and increase their O 3 sensitivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    24
    Citations
    NaN
    KQI
    []