Experimental Investigation of Dynamic Strain Aging in 304L Stainless Steel

2019 
We seek to develop a fundamental understanding of dynamic strain aging through discovery experiments to inform the development of a dislocation based micromechanical constitutive model that can tie to existing continuum level plasticity and failure analysis tools. Dynamic strain aging (DSA) occurs when dislocation motion is hindered by the repetitive interaction of solute atoms, most frequently interstitials, with dislocation cores. At temperatures where the interstitials are mobile enough, the atmospheres can repeatedly reform, lock, and release dislocations producing a characteristic serrated flow curve. This phenomenon can produce reversals in the expected mechanical behavior of materials with varying strain rate or temperature. Loss of ductility can also occur. Experiments were conducted on various forms of 304L stainless steel over a range of temperatures and strain rates, along with temporally extreme measurements to capture information from the data signals during serrated flow. The experimental approach and observations for some of the test conditions are described herein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    1
    Citations
    NaN
    KQI
    []