Acidity, Crystallite Size and Pore Structure as Key Factors Influencing 1,3,5-Trimethylbenzene Hydrodealkylation Performance of NiMoS/ZSM-5

2021 
NiMoS supported on ZSM-5 with different Si/Al ratio, crystallite size and pore structure was prepared by incipient impregnation method and applied in 1, 3, 5-trimethylbenzene (1, 3, 5-TMB) hydrodealkylation (HDAK). The physicochemical properties of samples were characterized by XRD, FTIR, SEM, N2 adsorption–desorption, NH3-TPD, Py-FTIR, H2-TPR, HRTEM and TGA. It is demonstrated that for microporous NiMoS/ZSM-5, acid amount and crystallite size of HZSM-5 are key factors affecting HDAK performance. The larger acid amount and smaller crystallite size can promote the conversion of 1, 3, 5-TMB, especially the dealkylation reaction, resulting in higher BTX yield. Compared to NiMoZ-3, mesopores in micro-mesoporous NiMoAKZ-3 are beneficial to accessibility of 1, 3, 5-TMB to NiMoS and acid sites in close proximity, and the diffusion of reactant and product molecules inside pores, thus resulting in superior HDAK performance of NiMoAKZ-3. Moreover, the reaction network of 1, 3, 5-TMB HDAK was revealed according to product distribution. NiMoS supported on ZSM-5 was developed for heavy aromatic hydrodealkylation (HDAK). Acid amount and crystallite size of microporous ZSM-5 are key factors affecting 1,3,5-trimethylbenzene (1,3,5-TMB) HDAK. Mesopores inside ZSM-5 facilitate accessibility of 1,3,5-TMB to NiMoS and acid sites in close proximity and improve HDAK performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []