Nucleosynthesis of Al 26 in massive stars: New Al 27 states above α and neutron emission thresholds

2014 
The ${}^{26}\mathrm{Al}$ radioisotope is of great importance for understanding the chemical and dynamical evolution of our galaxy. Among the possible stellar sources, massive stars are believed to be the main producer of this radioisotope. Understanding ${}^{26}\mathrm{Al}$ nucleosynthesis in massive stars requires estimates of the thermonuclear reaction rates of the $^{26}\mathrm{Al}$${(n,p)}^{26}$Mg, $^{26}\mathrm{Al}$${(n,\ensuremath{\alpha})}^{23}$Na, and $^{23}\mathrm{Na}$${(\ensuremath{\alpha},p)}^{26}$Mg reactions. These reaction rates depend on the spectroscopic properties of ${}^{27}\mathrm{Al}$ states above the neutron and alpha thresholds. In this context, the $^{27}\mathrm{Al}$${(p,{p}^{\ensuremath{'}})}^{27}$Al* reaction was studied at 18 MeV using a high-resolution Enge Split-Pole spectrometer. States from the ground state up to excitation energies of $\ensuremath{\approx}$14 MeV were populated. While up to the ${}^{23}\mathrm{Na}$ + $\ensuremath{\alpha}$ threshold no additional states are observed, we report for the first time 30 new levels above the ${}^{23}\mathrm{Na}$ + $\ensuremath{\alpha}$ threshold and more than 30 new states above the ${}^{26}\mathrm{Al}$ + n threshold for which excitation energies are determined with an uncertainty of 4--5 keV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    14
    Citations
    NaN
    KQI
    []