Gelation Characteristics and Encapsulation of Stromal Cells in Star Acrylate-Functionalized Poly(ethylene glycol-co-lactide) Macromonomers

2012 
In this work, a novel star 4-arm poly(ethylene glycol-co-lactide) acrylate macromonomer (SPELA) is synthesized, and the effect of macromonomer concentration and architecture on modulus, swelling ratio and sol fraction is investigated. The results show that the storage modulus of the hydrogel had an increasing trend with polymer concentration. Changing the polymer architecture from linear to 4-arm increased the storage modulus by 2.2-fold. The water content depended on the hydrophilic segment density as well as the extent of crosslinking and showed a decreasing trend with macromonomer concentration. The sol fractions of the SPELA hydrogels changed from 13% to 5% when concentration increased from 10% to 25%. The star SPELA hydrogel with high modulus, fast gelation time, and low sol fraction is potential useful as a degradable carrier in cell-based therapies. Results show that the SPELA hydrogel supports viability and osteogenic differentiation of the encapsulated bone marrow stromal cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []