Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2 Infected Syrian Hamsters.

2020 
Animal models recapitulating human COVID-19 disease, especially with severe disease, are urgently needed to understand pathogenesis and evaluate candidate vaccines and therapeutics. Here, we develop novel severe disease animal models for COVID-19 involving disruption of adaptive immunity in Syrian hamsters. Cyclophosphamide (CyP) immunosuppressed or RAG2 knockout (KO) hamsters were exposed to SARS-CoV-2 by the respiratory route. Both the CyP-treated and RAG2 KO hamsters developed clinical signs of disease that were more severe than in immunocompetent hamsters, notably weight loss, viral loads, and fatality (RAG2 KO only). Disease was prolonged in transiently immunosuppressed hamsters and uniformly lethal in RAG2 KO hamsters. We evaluated the protective efficacy of a neutralizing monoclonal antibody and found that pretreatment, even in immunosuppressed animals, limited infection. Our results suggest that functional B and/or T cells are not only important for the clearance of SARS-CoV-2, but also play an early role in protection from acute disease.IMPORTANCE Syrian hamsters are in use as a model of disease caused by SARS-CoV-2. Pathology is pronounced in the upper and lower respiratory tract and disease signs and endpoints include weight loss, viral RNA and/or infectious virus in swabs and organs (e.g. lungs). However, a high dose of virus is needed to produce disease and the disease resolves rapidly. Here, we demonstrate that immunosuppressed hamsters are susceptible to low doses of virus and develop more severe and prolonged disease. We demonstrate the efficacy of a novel neutralizing monoclonal antibody using the cyclophosphamide transient suppression model. Furthermore, we demonstrate that RAG2 knockout hamsters develop severe/fatal disease when exposed to SARS-CoV-2. These immunosuppressed hamster models provide researchers new tools for evaluating therapies and vaccines, and understanding COVID-19 pathogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    28
    Citations
    NaN
    KQI
    []