Optimal in-hospital defibrillator placement.

2020 
AIMS: To determine if mathematical optimization of in-hospital defibrillator placements can reduce in-hospital cardiac arrest-to-defibrillator distance compared to existing defibrillators in a single hospital. METHODS: We identified treated IHCAs and defibrillator placements in St. Michael's Hospital in Toronto, Canada from Jan. 2013 to Jun. 2017 and mapped them to a 3-D computer model of the hospital. An optimization model identified an equal number of optimal defibrillator locations that minimized the average distance between IHCAs and the closest defibrillator using a 10-fold cross-validation approach. The optimized and existing defibrillator locations were compared in terms of average distance to the out-of-sample IHCAs. We repeated the analysis excluding intensive care units (ICUs), operating theatres (OTs), and the emergency department (ED). We also re-solved the model using fewer defibrillators to determine when the average distance matched the performance of existing defibrillators. RESULTS: We identified 433 treated IHCAs and 53 defibrillators. Of these, 167 IHCAs and 31 defibrillators were outside of ICUs, OTs, and the ED. Optimal defibrillator placements reduced the average IHCA-to-defibrillator distance from 16.1 m to 2.7 m (relative decrease of 83.0%; P=0.002) compared to existing defibrillator placements. For non-ICU/OT/ED IHCAs, the average distance was reduced from 24.4 m to 11.9 m (relative decrease of 51.3%; P=0.002. 8 to 9 optimized defibrillator locations were sufficient to match the average IHCA-to-defibrillator distance of existing defibrillator placements. CONCLUSIONS: Optimization-guided placement of in-hospital defibrillators can reduce the distance from an IHCA to the closest defibrillator. Equivalently, optimization can match existing defibrillator performance using far fewer defibrillators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []