Illustrative Case Study on the Performance and Optimization of Proton Exchange Membrane Fuel Cell

2019 
Modeling is a powerful tool for the design and development of proton exchange membrane fuel cells (PEMFCs). This study presents a one-dimensional, two-phase mathematical model of PEMFC to investigate the two-phase transport process, gas species transport flow and water crossover fluxes. The model reduces the computational time for PEMFC design with guaranteed accuracy. Analysis results show that the concentration and activation overpotentials of the cell decrease with the increase of operation pressure, which result in enhanced cell performance. Proper oxygen stoichiometry ratio in the cathode decreases the cell activation overpotential and is favorable for performance improvement. The cell ohmic resistance correspondingly increases with the increase of catalyst layer thickness, which leads to a deteriorated cell performance. The improvement on cell performance could be facilitated by decreasing the membrane thickness. Predicted results show that the present model is a useful tool for the design optimization of practical PEMFCs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []