Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes

2021 
Abstract Hydroxyapatite (HAp) is a raw material used to fabricate scaffolds. Scaffolds are required to be porous to facilitate nutrient flow and vascularization. This study aims to produce porous HAp ceramics with macropores (>200 μm) and bioactivity and tune their macropore size. Polyethylene glycol (PEG) with molecular weights of 400, 3,400, and 8,300 was used to generate macropores. The macropore size increased as the molecular weight of PEG increased. In this method, emulsions were formed by hydrophobic PEG binding HAp nanoparticles during chemical syntheses. Water foams, as a core of the emulsion, were transformed into steam, and the steam expanded under heat treatment. Macropores were generated by the evaporation of the steam and consolidation of HAp nanoparticles. The difference in the molecular weight of PEG did not affect cell adhesion to the porous HAp ceramics. Cells adhered well to and spread widely on the HAp ceramics regardless of macropore size.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    1
    Citations
    NaN
    KQI
    []