High efficient removal and mineralization of Cr(VI) from water by functionalized magnetic fungus nanocomposites

2020 
A hydroxyl-functionalized magnetic fungus nanocomposite (MFH@GO) was prepared by a simple one-pot method for the removal of Cr(VI) from wastewater. The adsorption behavior of MFH@GO to Cr(VI) in wastewater was discussed in detail. At pH of 5.0 and temperature of 323.15 K, MFH@GO had higher adsorption capacity to Cr(VI) (58.4 mg/g) than the unmodified fungus and GO. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), scanning electron microscopy and energy dispersive X-Ray spectroscopy (SEM-EDX) were employed to determine the characteristics of MFH@GO. Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi. In addition, the adsorption mechanisms analyses show that Cr(VI) could be reduced and mineralized into ferric chromate in residues. These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI) from industrial wastewater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    5
    Citations
    NaN
    KQI
    []