AgBrO3/Few-Layer g-C3N4 Composites: A Visible-Light-Driven Photocatalyst for Tetracycline Degradation

2020 
The AgBrO(3)/few-layer g-C(3)N(4) composite photocatalyst has been developed via an in-situ synthetic method. The structure, morphology, light response range, separation and migration efficiency of the photogenerated electron-hole pairs and element valence state of the as-obtained samples have been characterized. The tetracycline was used to discuss the photocatalytic activities of the samples. The photocatalytic degradation mechanism of the as-obtained composites was also researched. The analysis results show that the photocatalytic degradation property of the asobtained composite photocatalyst appears to the tendency of first increasing and then decreasing with increasing the amount of AgBrO(3) under visible light illumination. When the mass ratio of AgBrO(3) to g-C(3)N(4) is 4:3, in 60 min, the photocatalytic degradation efficiency of the as-obtained composites reaches the maximum of 79%. It is 37% and 45% higher than that of pure AgBrO(3) and g-C(3)N(4), respectively. Moreover, the separation and migration efficiency of the photogenerated electron-hole pairs of the as-prepared composites are also enhanced. In addition, superoxide radicals and holes are the dominant active species during the photocatalytic degradation process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []