Antifouling Peptide Hydrogel Based Electrochemical Biosensors for Highly Sensitive Detection of Cancer Biomarker HER2 in Human Serum.

2021 
A facile strategy for the electrochemical detection of human epidermal growth factor receptor 2 (HER2), a breast cancer biomarker, was presented via the fabrication of an antifouling sensing interface based on the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and a biocompatible peptide hydrogel. The peptide hydrogel prepared from a designed short peptide of Phe-Glu-Lys-Phe functionalized with a fluorene methoxycarbonyl group (Fmoc-FEKF) enabled excellent activity preservation for the immobilized biomolecules, and its good hydrophilicity facilitated effective alleviation of nonspecific adsorption or biofouling, while the PEDOT film provided a highly stable and conducting substrate. The developed biosensor was highly sensitive and selective for HER2 detection, with a wide linear response range from 0.1 ng mL-1 to 1.0 μg mL-1 and a low limit of detection of 45 pg mL-1. Moreover, the peptide hydrogel based biosensor was feasible to use for complex biological samples, and it was capable of detecting HER2 in human serum with clinically acceptable accuracy, manifesting a promising potential for practical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []