Quantitative analysis of debris-flow flexible barrier capacity from momentum and energy perspectives

2019 
Abstract In-depth understanding of debris-structure interaction is hindered by a lack of physical data of debris flow impacting structures. This study reports a set of centrifuge experiments investigating the impact load exerted by debris flow on rigid and flexible barriers. A combination of high-speed imagery and load-displacement sensors enabled a comprehensive grasp of the impact details, including flow depth, velocity, impact pressure, bending moment, and cable force-elongation of flexible barrier. Test results reveal that the debris-structure interaction plays a major role in the energy dissipation and impact load reconstruction. The built-up of static load behind the barrier occurs simultaneously with the grow-up of impact force. As a result, the momentum flux of incoming flow is not merely a surrogate of the impact force. For the first time in physical measurement of debris flow impacting flexible barrier, a quantitative analysis from the energy perspective has been conducted. Debris flow impact results in over 90% of debris energy dissipated through the internal and boundary shearing, leaving
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    23
    Citations
    NaN
    KQI
    []