Hourglass-Type Polyoxometalate-Based Crystalline Material as an Efficient Proton-Conducting Solid Electrolyte.

2021 
Proton exchange membrane fuel cells are limited because they are limited to working temperatures and are susceptible to damage by dramatic electrochemical environments such as hydrogen peroxide/radicals. It is necessary to develop new proton-conducting materials that are water-stable and can operate at high temperatures. The hourglass reduced molybdophosphate-based compound (H2bimb)3[Zn3(H6P4Mo6O31)2] (bimb = 1,4-bis[(1H-imidazol-1-yl)methyl]benzene) was designed and synthesized under solvothermal conditions. Single-crystal X-ray diffraction analyses demonstrated noticeably that CUST-571 was composed of an hourglass {Zn[P4Mo6]2} structure, which consisted of two fully reduced half-units {P4Mo6}. It was found that CUST-571 possessed an excellent proton conductivity of 4.54 × 10-3 S cm-1 at 85 °C and 98% RH (relative humidity). In addition, CUST-571 is capable of an excellent catalytic decomposition of H2O2, which is beneficial to increase the life of fuel cells. On the basis of the aforementioned results, CUST-571 may be a promising proton-conducting polyoxometalate hybrid material in the future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []