Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation

2020 
The urea oxidation reaction has attracted increasing attention. Here, porous rod-like Ni2P/Ni assemblies, which consist of numerous nanoparticle subunits with matching interfaces at the nanoscale have been synthesized via a simple phosphating approach. Density functional theory calculations and density of states indicate that porous rod-like Ni2P/Ni assemblies can significantly enhance the activity of chemical bonds and the conductivity compared with NiO/Ni toward the urea oxidation reaction. The optimal catalyst of Ni2P/Ni can deliver a low overpotential of 50 mV at 10 mA·cm−2 and Tafel slope of 87.6 mV·dec−1 in urea oxidation reaction. Moreover, the constructed electrolytic cell exhibits a current density of 10 mA·cm−2 at a cell voltage of 1.47 V and an outstanding durability in the two-electrode system. This work has provided a new possibility to fabricate metal phosphides-metal assemblies with advanced performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    17
    Citations
    NaN
    KQI
    []