Spontaneous formation of anisotropic microrods from paraffin wax in an aqueous environment.

2021 
The construction of functional nano-/micro-architectures through self-assembly and self-organization of organic molecules and polymeric materials plays an important role in the development of many technologies. In this study, we report the spontaneous formation of uniform polymer microrods with lengths of up to a few tens of micrometers from paraffin wax. Through a solvent attrition approach, colloidal structures of paraffin wax are introduced into water. After the initial growth stage, the microrods undergo morphological transformation and end-to-end aggregation, processes likely driven by thermodynamics to create equilibrium structures with minimal interfacial energies. The polymer microrods can effectively absorb hydrophobic nanoparticles, indicating their potential to serve as host materials for functional components. The formation of polymer microrods from paraffin wax and their spontaneous growth mechanism discovered in this study may provide new insights to the self-assembly of microstructures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []