Complete suppression of reverse annealing of neutron radiation damage during active gamma irradiation in MCZ Si detectors

2013 
Abstract For the development of radiation-hard Si detectors for the SiD BeamCal (Si Detector Beam Calorimeter) program for International Linear Collider (ILC), n -type Magnetic Czochralski Si detectors have been irradiated first by fast neutrons to fluences of 1.5×10 14 and 3×10 14  n eq /cm 2 , and then by gamma up to 500 Mrad. The motivation of this mixed radiation project is to test the radiation hardness of MCZ detectors that may utilize the gamma/electron radiation to compensate the negative effects caused by neutron irradiation, all of which exists in the ILC radiation environment. By using the positive space charge created by gamma radiation in MCZ Si detectors, one can cancel the negative space charge created by neutrons, thus reducing the overall net space charge density and therefore the full depletion voltage of the detector. It has been found that gamma radiation has suppressed the room temperature reverse annealing in neutron-irradiated detectors during the 5.5 month of time needed to reach a radiation dose of 500 Mrad. The room temperature annealing (RTA) was verified in control samples (irradiated to the same neutron fluences, but going through this 5.5 month RTA without gamma radiation). This suppression is in agreement with our previous predictions, since negative space charge generated during the reverse annealing was suppressed by positive space charge induced by gamma radiation. The effect is that regardless of the received neutron fluence the reverse annealing is totally suppressed by the same dose of gamma rays (500 Mrad). It has been found that the full depletion voltage for the two detectors irradiated to two different neutron fluences stays the same before and after gamma radiation. Meanwhile, for the control samples also irradiated to two different neutron fluences, full depletion voltages have gone up during this period. The increase in full depletion voltage in the control samples corresponds to the generation of negative space charge, and this increase in concentration of negative space charge goes up with the neutron fluence. If we assume the reverse annealing is also taking place for the two gamma-irradiated samples with similarly different concentrations of negative space charge generated, the observed effect of no changes in space charge (no changes in V fd ) in these two gamma-irradiated samples would imply that concentrations of positive space charge created in these two control samples are different at the same gamma dose, and gamma irradiation effectively “switched off”, the RT (room temperature) reverse annealing of neutron irradiation. It has also been found that as soon as the gamma irradiation stops, the RT reverse annealing of neutron irradiation-induced defects resumes with same rate as that of the control detectors. This behavior in mixed radiation samples (neutron plus gamma) would suggest some nonlinear effect (defects induced by mixed-radiations are not additive of those by individual radiation alone), or interaction of radiation induced acceptor-type and donor-type defects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []