Interface Engineering of Graphene-Supported Cu Nanoparticles Encapsulated by Mesoporous Silica for Size-Dependent Catalytic Oxidative Coupling of Aromatic Amines

2019 
In this study, graphene nanosheet-supported ultrafine Cu nanoparticles (NPs) encapsulated with thin mesoporous silica (Cu–GO@m-SiO2) materials are fabricated with particle sizes ranging from 60 to 7.8 nm and are systematically investigated for the oxidative coupling of amines to produce biologically and pharmaceutically important imine derivatives. Catalytic activity remarkably increased from 76.5% conversion of benzyl amine for 60 nm NPs to 99.3% conversion and exclusive selectivity of N-benzylidene-1-phenylmethanamine for 7.8 nm NPs. The superior catalytic performance along with the outstanding catalyst stability of newly designed catalysts are attributed to the easy diffusion of organic molecules through the porous channel of mesoporous SiO2 layers, which not only restricts the restacking of the graphene nanosheets but also prevents the sintering and leaching of metal NPs to an extreme extent through the nanoconfinement effect. Density functional theory calculations were performed to shed light on the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    47
    Citations
    NaN
    KQI
    []