Three-dimensional imaging and three-dimensional printing for plastic preparation of medical interventions.

2020 
Three-dimensional (3D) imaging has been available for nearly four decades and is regarded as state of the art for visualization of anatomy and pathology and for procedure planning in many clinical fields. Together with 3D image reconstructions in the form of rendered virtual 3D models, it has helped to better perceive complex anatomic and pathologic relations, improved preprocedural measuring and sizing of implants, and nowadays enables even photorealistic quality. However, presentation on 2D displays limits the 3D experience. Novel 3D printing technologies can transfer virtual anatomic models into true 3D space and produce both patient-specific models and medical devices constructed by computer-aided design. Individualized anatomic models hold great potential for medical and patient education, research, device development and testing, procedure training, preoperative planning, and fabrication of individualized instruments and implants. Hand in hand with 3D imaging, medical 3D printing has started to revolutionize medicine in certain fields and new applications are developed and introduced regularly. The demand for medical 3D printing will likely continue to rise, as it is a promising tool for plastic preparation of medical interventions. However, there is ongoing debate on the appropriateness of medical 3D printing and further research on its efficiency is needed. As experts in 3D imaging, radiologists are not only capable of advising on adequate imaging parameters, but should also become adept in 3D printing to participate in on-site 3D printing facilities and randomized controlled trials on the topic, thus contributing to improving patient outcomes via personalized medicine through patient-specific preparation of medical interventions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []