Foxo3 in cardiac ischemia reperfusion injury in heart transplantation: a new regulator and target.

2020 
Ischemia-reperfusion (I/R) injury occurring in heart transplantation (HT) remains as a leading cause of transplant heart graft failure. Circular RNAs (circRNAs) play important roles in gene regulation and diseases. However, the impact of circRNAs on I/R injury during HT remains unknown. This study aims to investigate the role of circular RNA Foxo3 (circFoxo3) in I/R injury in HT. Using an in vivo mouse HT model and an in vitro cardiomyocyte culture model, we demonstrated that circFoxo3 is significantly upregulated in I/R-injured hearts and hypoxia/reoxygenation (H/R)-damaged cardiomyocytes. Knockdown of circFoxo3 using siRNA not only reduces cell apoptosis and death, mitochondrial damage, and expression of apoptosis/death-related genes in vitro, but also protects heart grafts from prolonged cold I/R injury in HT. We also show that circFoxo3 interacts with Foxo3 proteins and inhibits the phosphorylation of Foxo3 and that it indirectly affects the expression of miR-433 and miR-136. In conclusion, circRNA is involved in I/R injury in HT and knockdown of circFoxo3 with siRNA can reduce I/R injury and improve heart graft function through interaction with Foxo3. This study highlights that circRNA is a new type of molecular regulator and a potential target for preventing I/R injury in HT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    7
    Citations
    NaN
    KQI
    []