Resveratrol Counteracts Inflammation in Human M1 and M2 Macrophages upon Challenge with 7-Oxo-Cholesterol: Potential Therapeutic Implications in Atherosclerosis

2014 
Macrophages consist of two main subsets: the proinflammatory M1 subset and the anti-inflammatory M2 one. 7-oxo-cholesterol, the most abundant cholesterol autoxidation product within atherosclerotic plaque, is able to skew the M1/M2 balance towards a proinflammatory profile. In the present study, we explored the ability of the polyphenolic compound resveratrol to counteract the 7-oxo-cholesterol-triggered proinflammatory signaling in macrophages. Resveratrol-pretreated human monocyte-derived M1 and M2 macrophages were challenged with 7-oxo-cholesterol and analyzed for phenotype and endocytic ability by flow cytometry, for metalloproteinase- (MMP-) 2 and MMP-9 by gelatin zymography, and for cytokine, chemokine, and growth factor secretome by a multiplex immunoassay. We also investigated the NF-κB signaling pathway. In the M1 subset, resveratrol prevented the downregulation of CD16 and the upregulation of MMP-2 in response to 7-oxo-cholesterol, whereas in M2 macrophages it prevented the upregulation of CD14, MMP-2, and MMP-9 and the downregulation of endocytosis. Resveratrol prevented the upregulation of several proinflammatory and proangiogenic molecules in both subsets. We identified modulation of NF-κB as a potential mechanism implicated in 7-oxo-cholesterol and resveratrol effects. Our results strengthen previous findings on the immunomodulatory ability of resveratrol and highlight its role as potential therapeutic or preventive compound, to counteract the proatherogenic oxysterol signaling within atherosclerotic plaque.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    55
    Citations
    NaN
    KQI
    []