Neural Network Inversion in Adversarial Setting via Background Knowledge Alignment

2021 
The wide application of deep learning technique has raised new security concerns about the training data and test data. In this work, we investigate the model inversion problem under adversarial settings, where the adversary aims at inferring information about the target model's training data and test data from the model's prediction values. We develop a solution to train a second neural network that acts as the inverse of the target model to perform the inversion. The inversion model can be trained with black-box accesses to the target model. We propose two main techniques towards training the inversion model in the adversarial settings. First, we leverage the adversary's background knowledge to compose an auxiliary set to train the inversion model, which does not require access to the original training data. Second, we design a truncation-based technique to align the inversion model to enable effective inversion of the target model from partial predictions that the adversary obtains on victim user's data. We systematically evaluate our approach in various machine learning tasks and model architectures on multiple image datasets. We also confirm our results on Amazon Rekognition, a commercial prediction API that offers "machine learning as a service". We show that even with partial knowledge about the black-box model's training data, and with only partial prediction values, our inversion approach is still able to perform accurate inversion of the target model, and outperform previous approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []