Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes

2016 
Abstract Present experimental study focuses on the influence of plasmonic layer in Zr-doped Fe 2 O 3 (Z-F) thin film based photoanodes deposited in different configurations for photo splitting of water. The Au nanoparticles (plasmonic layer) as bottom layer and surface (top) layer are incorporated in the spray pyrolytically deposited Z-F thin layer. In addition to this, fabrication of Z-F sandwiched between two plasmonic Au layers (Au/Z-F/Au) as well as plasmonic Au layer sandwiched between two Z-F layers (Z-F/Au/Z-F) are also undertaken. All configurations using plasmonic layer show enhanced photoresponse in comparison to the pristine Z-F samples. The Z-F sandwiched between two plasmonic layers shows the most significant increase in photocurrent density at 0.8 V/SCE (Saturated Calomel Electrode) and also improved optical absorption due to the presence of two palsmonic layers which promote charge transfer and inhibit charge recombination. The obtained results are supported by characterization techniques viz. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), UV-Visible absorption spectroscopy, Photoelectrochemical properties, Mott-Schottky analysis and efficiency measurements of photoelectrochemical (PEC) sytstem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    23
    Citations
    NaN
    KQI
    []