Insulin-Like Growth Factor 2 (IGF-2) Regulates Neuronal Density and IGF-2 Distribution Following Hippocampal Intracerebral Hemorrhage

2020 
Abstract Background The insulin-like growth factor 2 (IGF-2) is a growth factor and anti-inflammatory cytokine that plays a crucial role in memory consolidation. However, the precise role of this factor in acute brain damage is still unclear. The present study aimed to evaluate the variations in hippocampal IGF-2 distribution on different days and investigate the effect of recombinant IGF-2 on memory cell density, and IGF-2 distribution following acute hippocampal damage resulting from intracerebral hemorrhage (ICH). Methods ICH was induced by injection of 100 μL of autologous blood into the left hippocampus of 72 male Sprague-Dawley rats. Recombinant IGF-2 was injected into the damaged hippocampus 30 min post-induction of ICH in the ICH-IGF-2 group. Then, on postoperative days 1, 3, 7, and 14, samples of brain tissue were collected to perform histopathological and immunohistochemical examinations. Results The stereological study indicated that the volume of the hippocampus and the number of neurons had a significant reduction, and the infarct volume had a significant increase following ICH. Following the injection of IGF-2, a significant improvement was observed in stereological studies. Immunohistochemical data showed that IGF-2 distribution increased in the hippocampus on different days after ICH, and IGF-2 injection led to a dramatic reduction in this distribution. Conclusions In summary, the gradual increase of endogenous IGF-2 as growth and anti-inflammatory factor following hemorrhagic stroke reveals a critical role of this factor in brain recovery after injury. Moreover, the injection of IGF-2 can prevent cell death and alleviate the damage caused by the hemorrhagic stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    3
    Citations
    NaN
    KQI
    []