Effect of surface functionality of molecularly imprinted composite nanospheres on specific recognition of proteins

2020 
Abstract The surface functionality of biomaterial plays a primary role in determining its application in biorecognition and drug delivery. In our work, three types of synthetic tailoring polymer nanospheres with hierarchical architecture were constructed to obtain functional polymer layer with disparate chemical motifs for protein adsorption via surface imprinting and grafting copolymerization. In this polymerization system, the structure stability of template protein bovine serum albumin (BSA) is well maintained within a certain range, which facilitated the accurate imprinting and precise identification. A comprehensive protocol for screening different functional layer is proposed through comparing the adsorption behavior, selectivity, identification and responsiveness to medium pH of three functional layers. Our study demonstrates that surface functionality greatly influences the adsorption capacity and selectivity of adsorption material. The functional layer with ionic liquid structure that could only provide multiple non-covalent binding sites is beneficial to the proteins aggregation and extraction, while the anti-nonspecific binding functional layer of biomaterial with zwitterionic structure for specific protein capture is promising to serve as a preferable antigen-antibody communication network, which shows great potential for protein recognition and separation. In summary, our proposed strategy provides a systematic selection criterion of biomaterials for effective application in biosensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []