Guizhi Fuling Decoction inhibiting the PI3K and MAPK pathways in breast cancer cells revealed by HTS2 technology and systems pharmacology.

2020 
Abstract As one of the classical traditional Chinese medicine (TCM) prescriptions in treating gynecological tumors, Guizhi Fuling decoction (GFD) has been used to treat breast cancer (BRCA). Nonetheless, the potential molecular mechanism remains unclear so far. Therefore, systems pharmacology was used in combination with high throughput sequencing-based high throughput screening (HTS2) assay and bioinformatic technologies in this study to investigate the molecular mechanisms of GFD in treating BRCA. By computationally analyzing 76 active ingredients in GFD, 38 potential therapeutic targets were predicted and significantly enriched in the “pathways in cancer”. Meanwhile, experimental analysis was carried out to examine changes in the expression levels of 308 genes involved in the “pathways in cancer” in BRCA cells treated by five herbs of GFD utilizing HTS2 platform, and 5 key therapeutic targets, including HRAS, EGFR, PTK2, SOS1, and ITGB1, were identified. The binding mode of active compounds to these five targets was analyzed by molecular docking and molecular dynamics simulation. It was found after integrating the computational and experimental data that, GFD possessed the anti-proliferation, pro-apoptosis, and anti-angiogenesis activities mainly through regulating the PI3K and the MAPK signaling pathways to inhibit BRCA. Besides, consistent with the TCM theory about the synergy of Cinnamomi Ramulus (Guizhi) by Cortex Moutan (Mudanpi) in GFD, both of these two herbs acted on the same targets and pathways. Taken together, the combined application of computational systems pharmacology techniques and experimental HTS2 platform provides a practical research strategy to investigate the functional and biological mechanisms of the complicated TCM prescriptions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    2
    Citations
    NaN
    KQI
    []