Genetic risk factors for atypical femoral fractures (AFFs): a systematic review†

2018 
Background: Atypical femoral fractures (AFFs) are uncommon and have been associated particularly with long-term anti-resorptive therapy, including bisphosphonates. Although the pathogenesis of AFFs is unknown, their identification in bisphosphonate-naive individuals and in monogenetic bone disorders has led to the hypothesis that genetic factors predispose to AFF. Aim: To review and summarize the evidence for genetic factors in individuals with AFF. Method: We conducted structured literature searches and hand-searching of conference abstracts/reference lists for keywords relating to AFF and identified 2566 citations. Two individuals independently reviewed citations for (i) cases of AFF in monogenetic bone diseases, and (ii) genetic studies in individuals with AFF. Results: AFFs were reported in 23 individuals with the following 7 monogenetic bone disorders (gene): osteogenesis imperfecta (COL1A1/COL1A2), pycnodysostosis (CTSK), hypophosphatasia (ALPL), X-linked osteoporosis (PLS3), osteopetrosis, X-linked hypophosphatemia (PHEX) and osteoporosis pseudoglioma syndrome (LRP5). In 8 cases (35%), the monogenetic bone disorder was uncovered after the AFF occurred. Cases of bisphosphonate naive AFF were reported in pycnodysostosis, hypophosphatasia, osteopetrosis, X-linked hypophosphatemia and osteoporosis pseudoglioma syndrome. A pilot study in 13 AFF patients and 268 controls identified a greater number of rare variants in AFF cases using exon array analysis. A whole exome sequencing study in 3 sisters with AFFs showed, among 37 shared genetic variants, a p.Asp188Tyr mutation in the GGPS1 gene in the mevalonate pathway, critical to osteoclast function, which is also inhibited by bisphosphonates. Two studies completed targeted ALPL gene sequencing, an ALPL heterozygous mutation was found in 1 case out of a cohort of 11 AFFs, whilst the second study comprising 13 AFF cases did not find mutations in ALPL. Targeted sequencing of ALPL, COL1A1, COL1A2, and SOX9 genes in 5 cases of AFF identified a variant in COL1A2 in 1 case. Conclusion: These findings suggest a genetic susceptibility for AFFs. A large multicenter collaborative study of well-phenotyped AFF cases and controls is needed to understand the role of genetics in this uncommon condition. This article is protected by copyright. All rights reserved
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    84
    References
    32
    Citations
    NaN
    KQI
    []